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Unifying frameworks

Many of the algorithms presented in the course are closely related.

There have been attempts to investigate the theoretical relationship
between the various methods.

In this lecture, we will look at a theoretical framework that unifies
many of the optimization methods that we have covered in this
course. The framework is presented in the context of seeded image
segmentation, but of course applies to other optimization problems as
well.



Power waterheds
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Recap, Random walker

Find a mapping x : V → [0, 1] that minimizes∑
eij∈E

(wij |xi − xj |)2
1/2

, (1)

subject to x(F ) = 1 and x(B) = 0. A final segmentation s is given by

si =

{
1 if xi ≥ 1

2
0 if xi <

1
2

. (2)



Recap, Random walker

Figure 1: Seeded segmentation by random walker.



A general formulation of seeded segmentation

In other words, the Random Walker method tries to minimize the l2
norm of the difference in x between adjacent vertices.

We have previously seen that the l2 norm is a special case of a lp
norm.

What happens if we try to extend the Random Walker method to
other lp norms?



A general formulation of seeded segmentation

Find a labeling x : V → [0, 1] that minimizes∑
eij∈E

(wij |xi − xj |)q
1/q

, (3)

subject to x(F ) = 1 and x(B) = 0. A final segmentation s is given by

si =

{
1 if xi ≥ 1

2
0 if xi <

1
2

. (4)



A general formulation of seeded segmentation

In the next few slides, we will see that the general formulation includes
many of the algorithms we have convered in this course as special cases!

For p = 1, we get the max flow/min cut problem.

For p = 2, we get the Random walker problem. (By definition)

For p =∞, we get the shortest path problem.

We will also extend the general formulation so that it includes
minimum spanning forests/watersheds.



Case q = 1, Minimal graph cuts

If we substitute q = 1 into (3), we get∑
eij∈E

wij |xi − xj | . (5)

It was shown in [3, 2] that minimizing this equation subject to x(F ) = 1
and x(B) = 0 is equivalent (dual) to the max flow problem. Thus, (6) can
be minimized using, e.g., the Ford-Fulkerson algorithm described in lecture
4.



Case q =∞, Shortest paths

If we let q approach ∞, we obtain the problem of minimzing

max
eij∈E

wij |xi − xj | , (6)

subject to x(F ) = 1 and x(B) = 0. It was shown in [3] that this is
equivalent to segmentation by shortest path forests. Thus it can be solved
by Dijkstra’s algorithm.



Extending the framework to watersheds

To incorporate watersheds into the general framework, we separate the
exponent on the weights from the exponent on the variables. We thus seek
to minimize ∑

eij∈E
wp
ij |xi − xj |q . (7)

subject to x(F ) = 1 and x(B) = 1. When p = q, this is equivalent to the
previous formulation (we can skip the root). When q is finite and p →∞,
the results of the above optimization problem converges to MSF cuts
(watersheds).



Unary terms

So far, we have only considered binary terms (”interaction” between
pairs of vertices).

We can extend (7) further by including unary terms:∑
eij∈E

wp
ij |xi − xj |q +

∑
vi∈V

wp
Fi |xi |

q +
∑
vi∈V

wp
Bi |xi − 1|q . (8)

The unary terms can be incorporated by adding ”phantom” seeds VF

and VB .



Unary terms

Figure 2: Unseeded segmentation with unary terms. (a) Image. (b) Segmentation
by graph cuts. (c) Segmentation by watersheds.



Unary terms
In [1], Power watersheds with unary terms were used to compute
anisotropic diffusion.

Figure 3: Anisotropic diffusion with Power Watershed.



So, which method is better?

Given the similarity between the presented method for seeded
segmentation, how do we decide which one to use?

In [2], an empirical comparison between a number of methods was
presented.

The study is based on the ”Grabcut” database from Microsoft
(available online). This dataset consists of 50 ”natural” images
provided with seeds and ground truth segmentations.



So, which method is better?

Figure 4: Example segmentations using the provided (top images) and
skeletonized (bottom images) set of seeds on the Grabcut database images: (a)
Seeds, (b) Graph cuts, (c) Random walker, (d) Shortest path, (e) Maximum
spanning forest (standard watershed), and (f) Power watershed (q = 2).



Empirical comparison 1

Figure 5: Results of comparison with symmetrically eroded seeds.



Empirical comparison 2

Figure 6: Results of comparison with asymmetrically eroded seeds.



Computation time

Figure 7: Computation time for the different algorithms in 2D and 3D.



Qualitative comparison

Min cut/max flow

+ Global optimization of weighted ”area” (sum of edge weights in the
cut).

+ Possible to approximate continuous ”cut metrics” with arbitrary
precision.

- Shrinking bias.

- Metrication artifacts on standard grids.

- NP-hard for more than two labels.

- Slower computation.



Qualitative comparison

Shortest paths

+ No shrinking bias.

+ Allows any number of labels.

+ Fast computation. Computation time indepent of the number of
labels.

- Metrication artifacts on standard grids.

- Sensitive to noise and missing boundaries.



Qualitative comparison

MSF cuts

+ Global optimization of the max-norm of the cut.

+ Provably robust to variations in seed-point placement.

+ No shrinking bias.

+ Allows any number of labels.

+ Fast computation. Computation time indepent of the number of
labels.

- Very sensitive to noise and leaks. (no penalty for ”long” boundaries)



Qualitative comparison

Random walker

+ No shrinking bias.

+ Allows any number of labels.

+ No metrication artifacts.

+ Tolerant to noise and missing boundaries.

- Computation time depent of the number of labels.

- Slower computation.



Conclusions

Many of the methods for seeded segmentation that we have seen in
this course (RW, GC, MSF, SPF) can be formulated as minimizing the
lp norm of the gradients of a potential field with boundary conditions.

The theoretical framework does not directly provide algorithms for
optimizing the different cases, but it provides theoretical insight into
the similarities and differences between the methods.

The general optimization problem of seeded segmentation can be
extended to include unary terms. This allows, e.g., the use of
watersheds for general optimization in computer vision.

We have looked at an empirical study that compares various methods
for seeded segmentation.
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